Branching stochastic processes as models of Covid-19 epidemic development

theHolySee_VaticanCityState - week 53

N. Yanev, V. Stoimenova, D. Atanasov

Branching stochastic processes as models of Covid-19 epidemic development

Branching stochastic processes as models of Covid-19 epidemic development: theHolySee_VaticanCityState - week 53

Abstract

The results presented here are obtained using the methologi proposed in the paper https://arxiv.o-rg/abs/2004.14838 for the country theHolySee_VaticanCityState. The data comes from European Centre for Disease Prevention and Control available at https://opendata.ecdc.europa.eu/covid19/case-distribution/csv.

Table of Contents

1.	Observed Infection data	1
2.	Estimating of the main parameter and some predictions	3

List of Figures

1.1. Number of the weekly reported laboratory-confirmed cases	1
1.2. Number of the total registered cases	2
2.1. The Lotka-Nagaev and the Harris type estimator of the growth rate	
2.2. Figure	4
2.3. Expected number of the nonregistered infected individuals without immigrati-	
on	5
2.4. Expected number of the nonregistered infected individuals with immigration	

Chapter 1. Observed Infection data

Figure 1.1. Number of the weekly reported laboratory-confirmed cases

Figure 1.2. Number of the total registered cases

Chapter 2. Estimating of the main parameter and some predictions

Figure 2.1. The Lotka-Nagaev and the Harris type estimator of the growth rate

Figure 2.2. Figure

 $\label{lem:control_control_control_control} Figure~2.3.~Expected~number~of~the~nonregistered~infected~individuals~without~immigration$

 $\label{thm:control} Figure~2.4.~Expected~number~of~the~nonregistered~infected~individuals~with~immigration$

Estimation of the model parameters.

k	1	m			ci		alpha		A1		M1	1
4	 	0.9444	 	-2.5531	- 4.442	20	NaN	0	0			-
				-2.5531						i		
	•		•	-2.5531					•	i		
1	ĺ	0.9444	İ	-2.5531	- 4.442	20	NaN	0	0	j		
0	Ì	0.9444	İ	-2.5531	- 4.442	20	NaN	0	0	İ		